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Abstract

The classical case of three competitors arranged on a resource gradient such that the central competitor will be excluded due to

competition from the other two is studied from the point of view of the effects of added predators. The basic formulation is motivated by

a desire to understand the effects of asymmetries in multidimensional Lotka–Volterra systems. We first study the effects of perfectly

specialist predators and find a rich collection of possible behaviors of the system including (1) extinction of all predators and subsequent

extinction of the subordinate competitor, (2) dominant competitors and their predators coexist but the subdominant competitor goes

extinct, (3) all species except the predator of the subordinate competitor coexist in coordinated phase-reversed chaos, (4) exclusion of one

or more species occurs through an expanding heteroclinic cycle, and (5) all species coexist in an uncoordinated chaos. We then study the

effects of five qualitatively distinct forms of polyphagy. In one case, corresponding to the well-known vulnerability to predation versus

competitive ability trade-off, it is possible to have the subordinate competitor be the only survivor in the system. The other three cases of

polyphagy lead to distortions in the basic pattern seen in the previously analyzed specialist case. Studying this case of ecologically

motivated asymmetries in the basic Lotka–Volterra formulation is a step in the direction of fully understanding interacting populations.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The original concept of limiting similarity and species
packing (MacArthur and Levins, 1967) includes the idea
that in a system with three competitors, if the competitors
are arranged in a chain where species 1 competes with
species 2, species 2 competes with species 3, but species 1
and 3 compete weakly or not at all, if competition against
species 2 is too large, the system will be reduced to species 1
and species 3. The situation represents the classic case of
three species on a single environmental gradient, in which
the amount of overlap of the second with either the first or
third is thought to represent the degree of competition of
the two ‘‘dominant’’ competitors (species 1 and 3) against
e front matter r 2006 Elsevier Inc. All rights reserved.
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the ‘‘subdominant’’ (species 2). If that competitive effect
becomes too strong, the subdominant is eliminated from
the system. Levins and MacArthur noted the simple but
powerful idea that if species 2 were removed from the
system, the niche overlap of species 1 and 3 would be such
that another species, perhaps not as susceptible to
competition as the former number 2, could invade. Thus,
there would be a kind of balancing act in which a suite of
species exist on an environmental gradient in such a way
that they would be optimally ‘‘packed,’’ and the idea of
limiting similarity (equivalent to Gause’s principle) became
linked with the idea of species packing. A great deal of
subsequent literature has treated this subject, directly or
indirectly (e.g., MacArthur, 1970; Abrams, 1983; Pacala
and Tilman, 1994; Leibold, 1998; Kinzig et al., 1999;
Chesson, 2000).
A related literature has evolved regarding the effect of

predators (or parasites, diseases, herbivores) on the process
of competition. It is an intuitive idea that one way of

www.elsevier.com/locate/tpb
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stabilizing a system of inherently unstable competitors is
with predatory pressure. The idea has frequently been
taken as almost axiomatic, from observations of Darwin
(1998), to an explicit statement by Hutchinson (1948), to
the keystone predator effect (Paine, 1974), to extensive
experiments with herbivores in grasslands (Harper, 1996;
Ryerson and Parmenter, 2001; Bakker and Olff, 2003), to
the ‘‘Janzen/Connell hypothesis’’ (Janzen, 1970; Connell,
1971, 1978; Cordiero and Howe, 2003) to more recent work
with more complicated food webs (Spiller and Schoener,
1990; Yodzis, 1995; deRoos et al., 1991, 1998; Vandermeer
et al., 2002; Vandermeer and Pascual, 2005) and the
implied top down effect of predators on a lower trophic
level (e.g., Schmitz, 2003). Mathematical theory has been
extensively employed to study this effect (Parrish and Saila,
1970; Cramer and May, 1972; Roughgarden and Feldman,
1975; Fujii, 1977; Hsu, 1981; Hutson and Vickers, 1983;
Kirlinger, 1986; Hofbauer and Sigmund, 1989; Vanderm-
eer, 1991; Schreiber, 1997, 1998).

These two ideas, species packing and control from
above, are strongly embedded in the ecological literature.
Yet an analysis of the consequences of putting them
together has never been systematically undertaken in the
context of the full complexity of non-linear dynamics that
emerge from oscillating systems. The important insights of
earlier workers, as reflected in the literature cited in the
previous paragraph, are mainly consequences of assuming
ultimately equilibrium dynamics. By formulating the
problem with strong competition against the subdominant
competitor, we admit to the possibility of complicated
behavior. Whether such complicated behavior actually
exists in nature remains an open question and is not the
focus of this work. Nevertheless, given the history of these
two ideas in the ecological literature, and given our modern
understanding of the important role of complex dynamics
in species coexistence (e.g., Huisman and Weissing,
1999, 2001a, b; Vandermeer and Pascual, 2005), exploring
the behavior of this particular formulation is warranted.

Furthermore, the present investigation can be viewed as
an extension of earlier work in which multiple competitors
were subjected to the influence of multiple predators in a
perfectly symmetrical system (Schreiber, 1997, 1998; Van-
dermeer and Pascual, 2005). As suggested in that work, the
full symmetry of the system was largely artificial and the
system was constructed in that fashion specifically for the
purpose of developing a baseline understanding of its
behavior in a non-equilibrium situation. Relaxing that
symmetry was stated as a subject of future research. Yet
relaxing the symmetry of a generalized predatory effect on
competitors could be done in many different ways. The
present analysis is one such way, motivated by the classical
structure of three species along a single resource gradient.
As will be seen, the underlying importance of heteroclinic
cycles (Vandermeer and Pascual, 2005) remains, but with
rather dramatic complicating effects of the asymmetry.

Therefore, we consider the case in which a competitor is
subdominant due to competition exerted on it by two other
species, referred to here as dominant competitors. We
study the specific case in which the subdominant compe-
titor is expected to be eliminated through strong competi-
tion from the dominant competitors, and ask first, what
pattern of predation pressure on all competitors would lead
to a reversal of this expected outcome, and second, what
sorts of population behavior patterns would be expected if
such an outcome occurred? We concern ourselves with the
admittedly restricted case in which strong competition (by
which we mean competition coefficients greater than unity)
is coupled with symmetry (in both the strong competitive
effect and the predatory effects). Effects of relaxing those
assumptions do not seem to alter the main conclusions, as
noted in the discussion section. We also note here that the
parameter values we used to study the system seem not to
matter much in the general qualitative results, as long as
they are in the zone of producing oscillations in the parent
subsystems.
2. The basic model

The situation we model is one in which three competitors
are arranged on a single environmental gradient, as
conceived originally by MacArthur and Levins (1967).
We do not explicitly consider the environmental gradient
as a state variable, but rather model the system in classic
Lotka–Volterra form in which the species are imagined to
be arranged on the environmental gradient in the order 1,
2, and 3 and have the consequent dynamic structure that
would result from such an arrangement. That is, compe-
titor 1 (x1) competes with competitor 2 (x2) and competitor
2 competes with competitor 3(x3), but competitor 1 and
competitor 3 do not compete with one another. Further-
more, we are interested in the strictly unstable (or bistable)
case of competition, that is, where x2 is not able to
withstand the joint competitive pressure from x1 and x3.
So, with the classic Lotka–Volterra competition formula-
tion, where aij is the competition effect of species j on
species i, we stipulate a13, a31 ¼ 0, and a12, a21, a32,
a23 ¼ 1:1. Assuming the classic Lotka–Volterra form for
predation (with a type II, or ‘‘diminishing returns’’ type
functional response) we take the following equations as
governing the system:

_P1 ¼ �mP1 þ aP1½x1 þ b2x2 þ b1x3�Y1, (1a)

_P2 ¼ �mP2 þ aP2½x2 þ b2x1 þ b3x3�Y2, (1b)

_P3 ¼ �mP3 þ aP3½x3 þ b3x2 þ b1x1�Y3, (1c)

_x1 ¼ x1½1� x1 � 1:1x2� � ax1ðP1Y1 þ b2P2Y2 þ b1P3Y3Þ,

(1d)

_x2 ¼ x2½1� x2 � 1:1ðx1 þ x3Þ�

� ax2ðP2Y2 þ b2P1Y1 þ b3P3Y3Þ, ð1eÞ
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_x3 ¼ x3½1� x3 � 1:1x2� � ax3ðP3Y3 þ b3P2Y2 þ b1P1Y1Þ,

(1f)

Y1 ¼
1

½1þ bðx1 þ b2x2 þ b1x3Þ�
, (1g)

Y2 ¼
1

½1þ bðx2 þ b2x1 þ b3x3Þ�
, (1h)

Y3 ¼
1

½1þ bðx3 þ b3x2 þ b1x1Þ�
,

where xi is the biomass of the ith competitor, Pi is the
biomass of the ith predator, bj is the proportion of
competitor j used by the appropriate predator, a is the
predation rate, m is the mortality rate of the predator, and
b is the parameter of the functional response. The system is
illustrated in Fig. 1. From the set-up of the equations it is
obvious that we are considering the symmetrical case with
respect to the competition coefficients (both equal to 1.1),
the specialized predation pressure (parameter a), and the
polyphagy coefficients (the b’s). System 1 is well known, at
least in lower dimensional forms, to generate oscillations,
some of which can be extreme, as discussed in the following
sections.

Biologically it makes little sense to consider populations
that are below a certain critical value. For biological
realism, when running simulations with system 1, we set a
lower limit of 10�8, below which the population density is
set equal to zero. Nevertheless, to explore the general
mathematical behavior that gives rise to the biological
results, it is frequently useful and even necessary to
eliminate this piece of biological realism. Thus, throughout
this paper we sometimes use the lower limit as a cut off
point, and sometimes not, the context making it clear
whether the biological or mathematical focus is being used.

Note that with either pair of competitors (x1 and x2 or x3

and x2) it would be impossible to identify a competitive
dominant since the symmetrical competition coefficient is
identical for either member of the pair. However,
considering the system as a whole, it is clear that the
topology of the food web results in x2 being subdominant
in the sense that it will inevitably be extinguished from the
Fig. 1. Diagrammatic representation of system 1 (arrowheads represent

positive effect, small circles represent negative effect).
system in the absence of predation. We thus refer to x2 as
the ‘‘subdominant’’ and x1 and x3 as the ‘‘dominant’’
competitors. This terminology may be a bit at variance
with some of the literature that defines dominance based on
the competitive ability of a particular species as compared
to the competitive ability of some other species. However,
we feel that the use of dominant versus subdominant in the
present case does not violate the spirit of the original idea
in that the dominant will survive and the subdominant will
be extinguished in the case of predator-free competition.
We begin with the case of perfectly specialized predators,

which is to say bi ¼ 0 for all i. The pattern of coexistence,
including the nature of the population dynamics involved,
is studied in detail for this case. We then turn to the various
cases of polyphagy. There are two cases of symmetrical
polyphagy (b3, b2 ¼ 0, b140, and b3, b2, b140), and three
cases of asymmetrical polyphagy (b2 ¼ 0, b3, b140;
b1 ¼ 0, b2, b340; and b1, b2 ¼ 0, b340). Because of the
overall symmetry of the system, the various other
topologically possible situations are all equivalent to one
or the other of these three cases. All five cases of polyphagy
are explored in terms of their biological outcomes.
3. The case of specialized predators (bi ¼ 0)

Simply calculating those values of parameter a for which
x240 (using the critical value of 10�8, below which any of
the populations is set equal to zero) and P240, we obtain
the result illustrated in Fig. 2. Note that when the
predation pressure (parameter a) reaches a critical point,
the competitive exclusion of x2 is avoided, although its
specific predator (P2) continues to be eliminated from the
system (obviously the other two predators act to control
the dominant competitors). At higher predation pressure
P2 is maintained in the system, along with its food source
x2. However, in Fig. 2 it is evident that this result is not
uniformly true for a critical value of the parameter a, for in
the zone of persistence of either P2 or x2, there are
interruptions in which they are indeed driven to extinction.
While the general pattern illustrated in Fig. 2 is consistent
for any set of initial conditions, the exact positions of the
exclusion zones (the white in Fig. 2) change depending on
initial conditions, but never extend far to either the left or
right for x2 and never far to the right for P2. This is a
curious pattern that requires further analysis to fully
explain, even though the general biological conclusion is
2.5 5 7.5 10

a

P
2

x2

0

Fig. 2. Qualitative outcome of the dynamics of system 1 for the

subdominant competitor (x2) and its predator (P2). Black indicates

persistence of the species, white indicates extinction of the species.
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clear—that specialist predators can act to eliminate the
necessary exclusion of the subdominant competitor.

If the predation rate (a in Eq. (1)) is too small, the
predators cannot be maintained in the system and the
resulting competition will remove the interior competitor.
This point can be calculated analytically as the minimum
predation rate (parameter a) for which the predator
isocline intersects the prey isocline, which is,

mð1þ bÞoa.

In the case simulated here (m ¼ 0:8 and b ¼ 2) the critical
value of a is 2.4. Thus, for any value of parameter a less
than 2.4, we would expect the extinction of all predators
and subsequent extinction of x2 due to competitive
pressure from x1 and x3

As predation rate increases beyond 2.4, subsystems 1 and
3 (i.e., P1,x1, and P3, x3) come to exist independently after
x2 is eliminated through competition and subsequently P2

goes extinct due to an absence of food. As predation rate
increases yet further, x2 is maintained in the system as an
anti-phase element in a coordinated chaos between system
1 and 3. This unusual result is illustrated in Fig. 3. The
dynamics are intuitively obvious—from the elementary
topology of the system, we expect x2 to be antiphase with
both x1 and x3 (Vandermeer, 2004), which it is in this
chaotic situation (at slightly smaller predation pressure a
simple limit cycle with x1 and x3 in phase and both out of
phase with x2 also exists). Thus, x2 apparently drives both
x1 and x3 to be in phase with one another, even though
they are chaotic. Note that in this parameter range, the
coordinated chaos occurs in the absence of P2, which is
0

0.25
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0.75

1

200 300 400 500 600 700

0

0.25

0.5

0.75

1

0 20 40 60 80 100 120

x1 x3 x2

x i
x i

Fig. 3. Time series for all three competitors in the system. (a) Initial time

series showing transients leading into the chaotic attractor. (b) From time

200 through time 700, illustrating the synchronized (coordinated) chaos of

x1 and x3, and the antiphase coordination of x2. Note that x2 does not

actually descend to the critical extinction threshold even though it may

appear to do so on this arithmetic plot.
rapidly driven out of the system. The biological explana-
tion for this phenomenon seems to be that the average
population density of x2 is reduced due to competition
from both x1 and x3 such that a larger predation rate is
necessary for P2 to be maintained in the system. Each of
the other two competitors, x1 and x3, receives only half the
competitive pressure experienced by x2, such that a smaller
predation rate is required to maintain their specialized
predators in the system.
Increasing the predation rate further, a large zone of

heteroclinic cycles is encountered. To visualize this
modality, we take advantage of the fact that systems 1
and 3 tend to oscillate in phase, which effectively reduces
them to the same system. We thus define the variables Dx

and Dp as the difference between systems 1 and 3 (i.e. Dx ¼

x1 � x3 and Dp ¼ P1 � P3). We then examine the dynamics
in Dx, Dp space, as illustrated for two cases in Fig. 4. This
range of parameter space is complicated, with only two of
the possible configurations illustrated in Fig. 4. There are,
evidently, two alternative modalities that are repeatedly
revisited either as unstable focal points or saddle cycles,
qualitatively similar to the Lorenz attractor. The detailed
behavior of the system in this heteroclinic zone is discussed
in the next section.
Increasing the predation rate further, a zone of

‘‘uncoordinated’’ chaos is encountered, in which all six
species are maintained in the system, similar to that
reported by Huisman and Weissing (2001a). A three-
dimensional plot of the competitors in this region is
illustrated in Fig. 5. All attractors within this parameter
zone seem to have the same general qualitative appearance.
The behavior in this region is unlike the previous chaotic
region in that subsystems 1 and 3 are not coordinated, but
rather oscillate unpredictably with respect to one another.
In Fig. 6 we illustrate, in a bifurcation diagram, these five

general behavior patterns (limit cycles with only spp 1 and
3, system 1 and 3 in limit cycle or stable focus, coordinated
chaos, heteroclinic cycles, and uncoordinated chaos), color
coded for four of the variables (variables 1 and 3 are
qualitatively identical since the system is symmetrical, thus
only the four variables are plotted).
From the point of view of the dynamics of competition

we thus see two distinct forms of maintaining all three
competitors in the system. First, at relatively low levels of
predation intensity, a system of coordinated chaos is
generated, wherein the subordinate competitor is anti-
phase with the two other subsystems, after having had its
predator eliminated. Thus, the dynamics are effectively to
have the subordinate species’ predator eliminated from the
system and then generate an anti-phase cycle between the
two other subsystems. Second, when predation pressure is
high, the basic pattern elucidated by Huisman and
Weissing (2001a) seems to be the rule, with uncoordinated
chaos driving the coexistence. Between these two chaotic
forms the system exhibits complicated heteroclinic cycles,
which very frequently involves the elimination of the two
dominant competitors, the details of which are discussed in
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Fig. 4. Plot of Dx versus DP (the difference between x1 and x3, and between P1 and P3), illustrating two distinct forms of the heteroclinic cycle, for slightly

different parameter values.
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the next section. From a practical ecological perspective,
the heteroclinic cycles all result in the same thing,
extinction of one or more elements in the system. However,
it is worth noting that elimination of x2, the subordinate
competitor, is not the first extinction event to occur in this
parameter zone. Indeed P2 is inevitably the first variable to
transcend the extinction threshold, as discussed in the next
section. We also note, to be elaborated further in the
discussion section, that since P2 is the variable that
transcends the extinction barrier first, the underlying
dynamics are such that, effectively, the system always
reduces to the case in which the dominant competitors (x1

and x3) are controlled by predators while the subdominant
competitor is free of predation (since P2, its predator, is
always eliminated first). Which is to say that at relatively
low levels of predation intensity, the predator specializing
on the subdominant competitor will be eliminated from the
system, in which case the system will inevitably be one in
which the dominant competitors are controlled by pre-
dators while the subdominant competitors will be free from
control from above. Thus, specialized predators do in fact
have the effect of deterring the competitive exclusion of the
subdominant, but through this curious biological effect of
the elimination of the predatory control over the sub-
dominant competitor. What one might expect to see in
nature would be a keystone-like effect, with predators
controlling dominant competitors such that subordinate
competitors could remain in the system. Yet the origin of
the pattern is more complicated in that there may very well
be a suite of specialist predators in the system in general,
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Fig. 5. Uncoordinated chaotic attractor represented in the 3D competi-

tion space.
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but the specialist that preys on the subdominant compe-
titor continues to be driven to local extinction.

4. Behavior in the heteroclinic zone

An appreciation for the complexity of the dynamics of
the system in the heteroclinic zone is enhanced through
reference to a more tractable system initially. Kirlinger
(1986) provides us with a starting point in her analytical
treatment of system 1 with b ¼ b ¼ x3 ¼ P3 ¼ 0, thus
reducing the 6D system to a 4D case, and eliminating the
functional response. Considering only the unstable (bis-
table) case Kirlinger notes that in a particular parameter
range the dynamics are characterized by a heteroclinic
cycle. As she explains, ‘‘Biologically this means: Prey 1 is
invaded by its predator, but this predator reduces the prey
so much that prey 2 outcompetes it. So prey 1 dies out
together with its predator, and prey 2 takes over. This lets
its predator grow, which again reduces the corresponding
prey. Due to bistability, the number of prey 1 increases
now and so on in cyclic alteration.’’ When this cycle is
repelling, the system becomes ‘‘permanent,’’ with either a
focal point attractor, a limit cycle or chaos maintaining all
four species in the system. However, when the cycle is
attracting, all four variables approach zero asymptotically,
what Kirlinger referred to as ‘‘persistent,’’ but which, for
all practical purposes, indicates the extinction of one of the
species that repeatedly approaches numbers very close to
zero. This can be seen in Fig. 7, where the logarithm of one
of the competitors has been plotted. We define the
parameter l as,

l ¼ d½lnðxminÞ�=dt

where xmin is a local minimum, as illustrated by the dotted
line in Fig. 7 (the slope of which is l). This slope varies as a
function of predator pressure (the parameter a in system 1).
The approach of xi to zero is very rapid for small predator
pressure (i.e., |l| is large), becoming smaller as that
pressure increases in a direct linear fashion. Thus, we find,
empirically,

l ¼ gþ ha,

where g and h are the parameters discussed presently.
Clearly, as h decreases, the range of the parameter a that
generates a heteroclinic cycle increases—as l approaches
zero, the heteroclinic cycle becomes repelling and the
characteristic behavior in which x asymptotically ap-
proaches zero is lost, while at the other extreme, a very
large absolute value of l drives x to extinction so rapidly
that the limits of the computer preclude computation.
We now relax one of the assumptions of Kirlinger’s

model and allow b40, which is to say, we add functional
response to the system. There is a systematic relationship
between the value of b and the value of h, as illustrated in
Fig. 8. While the value of g is also variable with b, it
remains relatively close to �0.17, and, tentatively, can be
taken as approximately constant. Thus the final computa-
tion of l can be written as

l ¼ gþ f ðbÞa,

where the shape of f is illustrated in Fig. 8b, but does not
correspond to any obvious classical functional form.
Thus we see that the heteroclinic form of Kirlinger’s 4D

system occupies more of the range of the parameter a as the
parameter b increases, but, most importantly, the qualita-
tive nature of the cycle remains the same.
We now consider system 1 with b ¼ b ¼ 0, but x3, P340

(Kirlinger’s 6D system). A casual glance at the basic
structure of system 1 suggests that (1) for very small
predation pressure ‘‘a’’, all predators will rapidly go
extinct, and x2 will be eliminated from the system through
competition (assuming competition coefficients ¼ 1.1); (2)
when a4m, P1 and P3 will enter the system, but if a is less
than some critical value, P2 will not be able to enter due to
the depressing effect on x2 through the competitors x1 and
x3; (3) at some larger value of a, P2 will become an effective
predator against x2 and remain in the system. In Fig. 9 we
show several time series for the log of P2, illustrating these
facts, the most important of which is that for ao2.56, P2

asymptotically approaches zero. However, within this
zone, the rate at which P2 approaches zero is variable,
gradually increasing as the parameter a increases. Further-
more, there is a critical Hopf bifurcation at some value of
the parameter a, as shown Fig. 10, leading to the
qualitative behavior that P2 approaches zero in an
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oscillatory fashion after the point at which a transcends
that critical Hopf bifurcation point (between 2.50 and
2.55—see Fig. 9). This behavior may be related to the
phenomena studied by Li and Smith (2003).
Thus, there are two (at least) qualitatively distinct
behaviors exhibited by P2 in this system: (1) a heteroclinic
cycle elaborated by Kirlinger (as illustrated in Figs. 7 and 8)
and (2) an oscillatory asymptotic approach to zero (as
illustrated in Figs. 9 and 10). The heteroclinic cycle results
from the dynamics of the coupled system in four dimensions
and the oscillatory approach to zero results from adding the
other two dimensions to the system. The question thus arises
as to how these two behaviors operate together, which they
obviously must in a 6D system with b40. In Fig. 11 we
present time series plots of the log of P2 at six values of the
parameter a, with b fixed at 1.5. For these particular time
series it is clear that the system moves from being dominated
by the oscillatory approach to zero (Fig. 11a) to being
dominated by the heteroclinic cycle approach to zero (Fig.
11f). Furthermore, the procedure of estimating l is
illustrated by the dotted lines in Figs. 11a and f, whereby
it is clear that the unambiguous definition of l (Eq. (2)) is
lost. Nevertheless, the biologically significant idea of a
global rate of change of the parameter as it approaches zero
remains qualitatively the same as in the case of either the
pure oscillatory decline (Fig. 9, a ¼ 2:55, and Fig. 10) or the
pure heteroclinic cycle (Fig. 7).
We now turn to system 1 with parameters set as in the

previous section (m ¼ 0:8, b ¼ 2). Estimating l for
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different values of a, we arrive at the data presented in
Fig. 12. Note the abrupt change in behavior at the point
a ¼ 4:6 (indicated by the dotted vertical line), where the
system goes from l estimated from mainly the asymptotic
approach to zero to l estimated from mainly the
heteroclinic approach to zero. A linear regression of the
latter points (the line in Fig. 12) results in the equation

l ¼ 0:197a� 1:37,

which provides an estimate of the end of the heteroclinic
cycle range at l ¼ 0, or a ¼ 6:95, which corresponds well
with the observed transformation from heteroclinic to
chaos (Fig. 6). There is an effective slow reversal of the
stability of the heteroclinic cycle, pushing the system into a
constrained but uncoordinated chaos. This basic pattern is
further discussed below.

5. The case of generalized predators

If we now relax the assumption of complete specializa-
tion of the predators, the analysis becomes somewhat more
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complicated. As indicated in Fig. 1, we restrict the degrees
of polyphagy to be internally symmetrical, which is to say
the predatory effect on one non-specialized competitor is
equal to the predatory effect on the other non-specialized
competitor. Given this restriction, there are five qualita-
tively distinct cases to be analyzed, as follows: case 1,
b3 ¼ b2 ¼ 0, b140; case 2, b1 ¼ b2 ¼ 0, b340; case 3,
b1 ¼ 0, b2, b340; case 4, b2 ¼ 0, b1, b340; case 5, b1, b2,
b340. Other cases, because of the fundamental symmetry
of the system, are redundant (for example b1, b240, b3 ¼ 0
is identical to case 4).

We begin with case 1 and treat it separately from the
other four cases due to its ecological significance. Much has
been made in recent literature about the possible trade-off
between competitive ability and vulnerability to predation
(Mills et al., 1993; Menge et al., 1994; Leibold, 1996). This
is precisely what case 1 represents, with the dominant
competitors (x1 and x3) being subjected to ever greater
amounts of predator pressure, but the subdominant
competitor (x2) subject to predation from only its own
specialized predator. In this case there is polyphagy on the
dominant competitors, meaning that P1 and P3 eat both x1

and x3 but not x2 the latter consumed only by its main
predator. The general patterns of existence of x2 for the
simple case where b ¼ 0, seem to be maintained in rough
outline as the polyphagy is increased (Fig. 13a), that is, the
basic pattern observed for b ¼ 0 (as shown in Fig. 2)
repeats itself as b increases, clearly with modifications, but
qualitatively similar patterns. The exception to this
generality is at high levels of b. Recall that P2 enters the
system (i.e., is no longer necessarily eliminated through
expanding oscillations) when the uncoordinated chaotic
zone is encountered (compare Fig. 2 and Fig. 6). In this
zone, increasing the values of b does cause changes in the
dynamics of the system, as described presently.
Persistence or extinction of x2 is the basic topic studied

in this work, and thus the black and white representations
of Figs. 2 and 13a signify the answer to the fundamental
question. However, as indicated in the previous sections,
the dynamic patterns associated with the fate of x2 are
complicated. In the case of b ¼ 0 those patterns were
discernable (Fig. 6 and the discussion of the dynamics of
the heteroclinic zone). From extensive simulations, it
appears that there are nine common patterns of ultimate
coexistence (assuming extinction of any population that
falls below the value of 10�8), as shown in Fig. 13b. There
are, in fact, a variety of others, but the nine pictured in Fig.
13b appear to be the most common. Refining Fig. 13a with
color coding to indicate which ‘‘mechanism’’ (i.e., which



ARTICLE IN PRESS

P2 P3x1 x2 x3 P1

1 0 1 0 0 0
1 0 1 1 0 1
1 0 0 1 0 0
0 0 1 0 0 1
1 1 1 1 1 1
0 1 0 0 1 0
0 1 0 0 0 0
0 1 0 1 0 1
1 1 1 1 0 1

(a)

(b)

(c)

Fig. 13. Parameter space study of case 1 (trade-off between competitive

ability and vulnerability to predation), plotting parameter a (abcissa)

versus parameter b (ordinate). (a) Extinction (black) versus persistence

(white) of species x2. (b) The nine common cases (1 indicates presence, 0

indicates extinction). (c) Color coded (according to b) version of the

parameter space in (a).

Fig. 14. Parameter space studies for cases 1–5 (see Fig. 12 for color codes),

parameter b on ordinate, parameter a on abcissa.

J. Vandermeer et al. / Theoretical Population Biology 69 (2006) 395–408404
ultimate pattern of existence) corresponds to each state in
the parameter space, we obtain the pattern displayed in
Fig. 13c (note that all white spaces represent some other
form of existence, not reflected in our nine-fold classifica-
tion).

The underlying mechanisms are thus revealed in the
color coding of Fig. 13c. When specialized predation and
polyphagy are very high (upper right hand corner of Fig.
13c), x1 and x3 are reduced to a point that their predators
can no longer survive due to lack of food. Consequently x1

and x3 are driven out of the system by their predators, who
then follow them to extinction. Thus, the only survivors in
this high predation zone are the subdominant competitor
and its predator. Reducing the predatory effect (both a and
b) reduces the system again to x2 being eliminated by
competition from x1 and x3. Thus, generally it can be said
that when the competitive ability versus predator vulner-
ability trade-off is involved, the basic pattern of persistence
of the subdominant competitor is basically the same for
either specialized or generalized predation, with the
important caveat that at extremely high levels of predation,
the system effectively decomposes (although one pattern of
that decomposition is the survival of x2, due to the
exclusion of the dominant competitors).
The other four cases of polyphagy do not fall within the

rubric of the competitive ability versus predator vulner-
ability trade-off, and, not unexpectedly, the pattern
resulting from the addition of polyphagy is distinct
(Fig. 14). Cases 2–5 all have generally the same appearance,
although the details vary greatly from one to another. In all
cases x2 fails to survive at very high levels of polyphagy. It
is also qualitatively discernable that all zones of behavior
seem to qualitatively bend towards the right, more rapidly
in cases 3 and 5 than in cases 2 and 4. We have not studied
the detailed behavior of all of these cases, but strongly
suspect that the basic patterns of behavior, as summarized
above (also see Fig. 6) remain more or less constant, with a
basic distortion. A particularly interesting situation arises
in the parameter zones that show the light green color (in
cases 3 and 5 in Fig. 14), which is the case where x2, P1 and
P340. The subdominant competitor coexists with the two
predators that specialize on the dominant competitors, but
neither the dominant competitors nor the predator that
specializes on the subdominant competitor survive. This is
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an unusual situation that, to our knowledge, has never
been observed in nature, as we discuss more fully below.

While clear patterns associated with polyphagy can be
recognized, it is nevertheless important to note that the
specific way in which polyphagy is manifest (which of the
five cases) in fact makes a large difference in the details of
the observed pattern (Figs. 13 and 14).
6. Discussion

It hardly seems necessary to note that our model is a very
rough ‘‘toy’’ model that is consequently expected to
correspond to nature in a very rough way. Our results
are extensions of other results (e.g., Vandermeer and
Pascual, 2005) to non-symmetrical cases. As noted in that
work, when relaxing symmetry in a system of multiple
competitors and multiple predators, there are a very large
number of ways in which asymmetry could be introduced.
The present work seeks to understand the relaxation of
that symmetry in a way that reflects well-known asymme-
tries, namely, competitors on a resource gradient and the
predators that may or may not influence the competitive
outcomes. Our initial expectations were that the conse-
quences of introducing such asymmetry would be minimal,
and that the simple heteroclinic cycles that seem to
dominate the overall structure of symmetrical systems of
predators and competitors (Vandermeer and Pascual,
2005) would likely remain relatively simple. Such was not
the case, as we report herein.

Understanding the influence of predators on the
competitive interactions of their prey has been a recurring
theme since Darwin first talked about mowing plants. The
keystone predator hypothesis, the Janzen/Connell hypoth-
esis, and many other formulations are leitmotifs on that
basic theme, even if not recognized as such. It seems
obvious that if predators interfere with the competitive
process, they could also defer the inevitable competitive
exclusion implied by strong competition in Gause’s
principle. Given the intuitively obvious importance of the
idea, it is not surprising that theoreticians have weighed in
on the topic (see references in the introduction). Amongst
the most important of the many theoretical results already
in the literature is the need for minimally the same number
of specialist predators as competitors in order to deter
competitive exclusion, finally proved in a general mathe-
matical form by Schreiber (1998). On the other hand, it
remains the case that generalist predators are not up to the
task of changing the expected Gausian outcome, contrary
to what Darwin seems to have believed. The idea of an
intermediate polyphagy, neither specialists nor generalists,
was deduced from a perfectly symmetrical system (Van-
dermeer and Pascual, 2005). Virtually all of the theoretical
musings on this problem have been concerned with a
generally symmetrical system, which brings up the question
as to whether a non-symmetrical system would show
similar patterns.
Pursuing the general problem of predators influencing
competitive outcome, if non-symmetrical, generates con-
ceptual difficulties since there are many ways in which the
symmetrical system could be made non-symmetrical. In
this contribution we studied just one of those ways, one
that has become common in the literature, that of three
competitors on a resource gradient. This system, which in
no way actually requires a truly simple one resource
gradient, involves two competitors that compete at very
low levels (taken here to be zero), but both of which
compete at high levels with a third species. The arrange-
ment is most easily diagrammed with the classic three
competitors on a simple resource gradient, even
though mathematically there is nothing that requires the
system to be restricted to a simple one-dimensional
gradient. The competitive relations are defined by the
competition coefficients in the equations, and the position
along the resource gradient is simply a convenient visual
aid to see the competitive arrangements. Furthermore,
since the point of the study is to examine patterns of
predatory effect on the process of competitive exclusion,
we restricted our analysis to strong competition between
the dominants and subdominant (i.e., a competition
coefficient of 1.1 which insures competitive exclusion when
unperturbed).
We have studied this special case of limiting similarity

and species packing in which, through the process of
competition, a subdominant competitor is expected to be
excluded, but through the influence of predators in the
system, that exclusion may be prevented. We have
demonstrated, with simple Lotka–Volerra type models,
that the general consequences of adding predators to the
system of one subordinate and two dominant competitors
may indeed rescue the subdominant competitor (e.g.,
Fig. 2), as has been demonstrated previously (Hutson
and Vickers, 1983; Kirlinger, 1986; Hofbauer and Sig-
mund, 1989; Vandermeer, 1991). However, the underlying
biological reasons for this rescue effect is dramatically
different for different forms of predator pressure, some of
which generate complicated cycles, thus adding to the
already burgeoning literature on cycles and species
diversity (e.g., Abrams, 1999; Abrams and Holt, 2002;
Huisman and Weissing, 1999, 2001a, b; Vandermeer et al.,
2002; Vandermeer, 2004).
Given the two ‘‘dominant’’ competitors (those who will

eliminate the subdominant absent predation) and the
‘‘subdominant’’ (the one that will be eliminated absent
predation), the question is what will be the effect of adding
predators to this competitively asymmetrical system. We
approached this problem in two steps: (1) with perfectly
specialist predators and (2) with various forms of
asymmetry in polyphagy of the predators. Situation
number one (specialist predators) was approachable
through simulation experiments and led to interesting
patterns of complex behavior underlying various cases of
predators acting to defer expected competitive exclusion.
Situation number two was far more complicated, and we
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were able only to catalogue a variety of complex behavior
patterns involved in deferring competitive exclusion.

In the case of perfectly specialist predators a superficial
study of the system would reveal (see Fig. 1) that at low
levels of predation intensity the expected competitive
exclusion would continue to occur, not surprisingly since
at the extreme of very little predation pressure we would
expect the system to behave more or less as if predation
were not present. And at the other end of the spectrum, as
might be expected, the subdominant competitor escapes the
competitive exclusion fate. However, the complications
involved with this general and predictable qualitative result
are sufficiently interesting to merit close study. First, it is
obvious that at intermediate predation intensities (see Fig.
1), there is a complicated pattern in which at some values of
predation intensity competitive exclusion is avoided, but at
very near values, either higher or lower, it is not. Second,
there exist values of predator intensity for which the
subdominant competitor survives, but its specialist pre-
dator may be either present or absent. In other words,
while specialist predators clearly can deter the process of
competitive exclusion, something more complicated must
be happening with the dynamics, which leads us to a
detailed study of the dynamical patterns associated with
different levels of predation intensity.

The detailed study of the specialist predator case
revealed five fundamental qualitatively distinct patterns
(Fig. 6). First, not surprisingly, if the predation rates are
excessively small the predators go extinct and the basic
Gausian exclusion occurs. Second, as the predation rates
increase, the dominant competitors and their predators
coexist in either a stable focus or a limit cycle, but the
subdominant still undergoes Gausian extinction. It is not
insignificant that the dominant competitors oscillate with
respect to their predators.

Third, as predation pressure is increased, a parameter
combination is reached in which systems 1 and 3 (i.e., the
two dominant competitors and their predators) are
maintained in the system, either in a stable equilibrium
or a stable limit cycle, but a curious behavior is added in
which systems 1 and 3 are completely in-phase coordinated
with one another, with the coordination driven by the
competitive interaction of x2 versus x1 and x3. Qualitatively
this behavior is perhaps to be expected, according to the
following logic: Since P2 is driven out of the system in this
region, what remains is the pair of oscillators x1, P1 and x3,
P3, coupled together through the competitor x2. Since x2

connects x1 and x3 through competition between the two,
the remaining predators have an indirect negative effect on
each of the dominant competitors (i.e., P1 indirectly affects
x3, because P1 negatively affects x1 which negatively affects
x2 which negatively affects x3). By the basic topology of
this connection (Vandermeer, 2004) we expect that systems
1 and 3 should be phase coordinated in synchrony, which is
what is observed. It should be noted that this effect is
extremely strong, and that even when the system is in
chaos, subsystems 1 and 3 are still completely phase
coordinated (Fig. 3). Thus, what we have is a permanent
persistence of all three competitors due to what we refer to
as ‘‘coordinated chaos,’’ a form of chaotic coexistence that
appears quite distinct from other forms (e.g., Huisman and
Weissing, 1999, 2001a). Four of the six populations (the
dominant competitors and their predators) oscillate chao-
tically, but in perfect synchrony with one another, and the
remaining population (the subdominant competitor) also
oscillates chaotically, but in anti-phase synchrony with the
first four.
The fourth pattern (Fig. 6) occurs when the predation

rate becomes yet larger, and the whole system appears to be
dominated by a complicated combination of an unstable
focal point or limit cycle pointed at zero (Fig. 10) coupled
with a stable heteroclinic cycle. We spent considerable time
analyzing this form of behavior noting that by defining a
parameter, l, similar to a Lyapunov exponent (not
equivalent, but with similar properties), we are able to
see clearly how this part of the parameter space eventually
changes into other forms of chaos (see especially Fig. 12).
While the details are complicated and extremely interesting
from a mathematical point of view, the biological
consequences are mainly that the probability of extinction
in this heteroclinic zone is unpredictable, depending largely
on which of the variables descends more rapidly toward
zero in the general heteroclinic cycle. Thus, competitive
exclusion may be avoided in this zone, but it also may go to
completion, depending to some extent on the starting
point. Clearly, further work on this so-called heteroclinic
zone is warranted.
Finally, the fifth pattern is one of uncoordinated chaos

(Fig. 5). As predation pressure increases the heteroclinic
zone gives rise, suddenly, to this so-called uncoordinated
chaos. This peculiar bifurcation appears to result from a
reversal of the stability of the heteroclinic cycle, but
retention of the instability of an internal cycle, as
diagrammed in Fig. 15. The pressure away from zero
caused by the unstable heteroclinic cycle is balanced by the
pressure away from the internal focal point to create a zone
in which the system is constrained, but nevertheless
chaotic. This chaotic zone is similar to the chaotic
coexistence reported elsewhere (Huisman and Weissing,
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1999, 2001a, b), perhaps with the same constraining effect
of an unstable heteroclinic cycle.

This overall picture may give rise to the unusual
situation (Vandermeer, 2004) in which an increase in one
form of coupling has different effects depending on where
the system is located with regard to some other form of
coupling. For example, if the system is located in the
heteroclinic zone, an increase in specialized predator
pressure can result in the whole system being maintained
in perpetuity, but in the form of apparently uncoordinated
chaos, while a decrease in specialized predator pressure can
also result in almost the whole system being maintained in
perpetuity (except P2), but in the form of ‘‘coordinated’’
chaos. From the point of view of the subdominant
competitor, the heteroclinic zone means an uncertain
future, depending on initial conditions. Either an increase
or decrease in predator pressure results in complete
persistence, but in two qualitatively distinct forms—on
the one hand, as an oscillatory element out-of-phase with
two in-phase oscillators (e.g., Fig. 3) and absent any direct
predator pressure, or, on the other hand, in chaotic
fluctuations with all the other populations in the system.
Such complicated behavior resulting from such a simple
connection in such a simple system may be cautionary for
the growing literature that seeks to understand food webs
from a knowledge of the topological pattern of connec-
tions, irrespective of the qualitative nature of those
connections.

When polyphagy is added to the basic system, consider-
able complications arise. Nevertheless, certain patterns
remain evident. In the particular case of the competitive
ability versus predator vulnerability trade-off (Fig. 13), the
basic pattern observed in the case of specialized predators
seems to be only slightly morphed, at least at relatively low
levels of polyphagy. As polyphagy becomes stronger, even
in this case, the pattern qualitatively changes, and x2 can be
driven from the system at values of the parameter a where
it was persistent with the specialist predators. However, at
extremely high levels of predation (both specialized and
polyphagous) the curious result emerges that the dominant
systems (x1, P1 and x3, P3) are driven to extinction and the
subdominant competitor persists, oscillating with its
specialist predator. Such a result is clearly at odds with
the entire idea of species packing, in that not only is the
subdominant competitor rescued from exclusion, it is the
only competitor to survive.

Viewing the parameter space with fuzzy glasses (Fig.
13c), it is apparent that there is a large area in which the
subdominant competitor persists in the system, while all
other components are eliminated (the light green colora-
tion). Furthermore, this pattern is relatively independent of
the level of polyphagy in the system—an intermediate level
of specialist predation pressure (parameter a) creates the
conditions in which all but x2 is eliminated from the
system. This suggests what may at first appear to be an
illogical question—under what conditions can the domi-
nant competitors persist in the system (i.e., there is no a
priori reason to expect the ‘‘dominant’’ competitors to be
excluded)? Obviously, at low levels of predation they
persist either because predation pressure is too small to
defer the process of competitive exclusion, or because they
are anti-phase coordinated with the subdominant compe-
titor. On the other hand, at high levels of predation they
persist in uncoordinated chaotic fluctuations with all
species. At intermediate levels of specialist predation
pressure, the entire system is in the heteroclinic zone and
usually the oscillations of all but the subdominant
competitor are sufficiently large to key-in the exclusion
criterion. We thus arrive at the unusual conclusion that
predation pressure can effectively reverse the competitive
dominance, rendering dominant competitors excluded and
the subdominant competitor surviving. This pattern is
effectively the keystone predator pattern, but with the
outcome due to complex population fluctuations. The
underlying reason is the strong heteroclinic zone (which, as
explained above, involves more than just heteroclinic
cycles) that is generated by predation pressure.
In polyphagous systems that do not involve the trade-off

between competitive ability versus predator vulnerability
(Fig. 14), the situation is more complex, but generally
follows a similar pattern among these four cases. The
subdominant competitor may be maintained in the system
at low levels of polyphagy, but is inevitably eliminated
when polyphagy reaches a higher level. Furthermore, there
is a general pattern of each of the zones of dynamic
behavior ‘‘bending’’ to the right as polyphagy increases.
However, despite these generalizations, the details of the
dynamic behavior are complicated, with obvious alter-
native basins of attraction occurring in a variety of places
in the parameter spaces, along with complex patterns of
chaos that we have not attempted to analyze completely.
A particularly interesting case is observed in the

uncoordinated chaotic zone of cases 3 and 5. As both b
and a increase, the heteroclinic zone that gives rise to x2

alone surviving (light green in color) appears to give rise to
complex oscillations (seemingly chaotic) involving x2, P1

and P3. The dominant competitors as well as the predator
of the subdominant have been eliminated from the system
and what remains is an oscillatory system involving the
subdominant competitor along with the predators that do
not specialize on it, and in the absence of the main food
sources of those two predators.
Finally, it is worth noting that while we begin with an

obvious and well-studied situation, that of three competi-
tors on a gradient affected in various ways by predators in
the system, the ultimate results are remarkably complicated
(Figs. 13 and 14), and include situations that, if encoun-
tered in nature, would never cause suspicion that they were
derived from the basic and obvious setup. Thus, for
example, the case where x2, P1 and P3 survive in perpetuity,
if encountered in nature would seem to be nothing more
than two predators surviving on a single competitor (e.g.,
the case of Armstrong and McGehee, 1980), rather than
the outcome of the original six-species system. In this sense,
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each of the outcomes in Figs. 13 and 14 can be considered
as a particular community assembly. However, from this
point of view, we can hardly ignore the existence of many
alternative community structures, the nine depicted in Fig.
13, plus many more not explicitly shown here (which are
included in the white areas in the color panels of Figs. 13
and 14). These alternative structures depend both on
position in parameter space and, depending on that
position, on the initial values of the populations.
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