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Abstract

We compared five-year old forests developing after agriculture to those recovering from Hurricane Joan (1988)
and to the pre-hurricane forest, at two sites in tropical rain forest in southeastern Nicaragua. We used non-para-
metric cluster analysis to group transects by their species compositions, and compared their species richness,
estimated total species richness, dominance, density and basal area. Post-agriculture transects showed distinctive
species compositions and lower diversity than post-hurricane transects, which were in turn more similar to the
pre-hurricane forest. These results are similar to those found by other researchers in the Amazon and in Puerto
Rico. Land use history was more important than proximity in the landscape in determining the composition and
structure of post-disturbance forests in this region.

Introduction

Succession occurs after both natural and human-
caused disturbances, and both kinds have been stud-
ied for many decades. The classic “old-field” succes-
sions begin with the abandonment of agricultural
fields or pastures (Budowski 1965; Ewel 1980; Go-
mez-Pompa et al. 1972; Golley 1977; 1985; Uhl
1987; Aide et al. 1995; Zimmerman et al. 1995),
while natural disturbances which initiate regeneration
processes include tornadoes (Peterson and Carson
1996), river meanderings (Salo et al. 1986; Terborgh
et al. 1996), volcanoes (Thornton 1984; Vitousek et
al. 1992), earthquakes (Garwood et al. 1979; Myster
and Fernandez 1995), storm downbursts (Nelson et al.
1994), and hurricanes (Bellingham et al. 1994; Boose
et al. 1994; Brokaw and Walker 1991; Foster and
Boose 1995; Lugo et al. 1983; Pascarella 1997; Van-

dermeer et al. 1995; Whigham et al. 1991). Many of
these kinds of disturbances can be followed by fires,
which can occur even in tropical rain forests, both
naturally (Goldammer 1992) and from human causes
(Sanford et al. 1985; Uhl 1998; Cochrane and Schulze
1999).

In recent years various authors have pointed out
similarities and differences in the composition and
structure of successional vegetation after natural ver-
sus human disturbances (Goldammer 1992; Janzen
1990; Riera 1992; Walschburger and von Hildebrand
1991). Several ecologists have also emphasized that
tropical successional forests can in some situations
both be very productive and maintain high levels of
biodiversity (Brown and Lugo 1990; Ewel 1980; Fin-
egan 1992; Lugo 1995).

We have been studying the regeneration of the
tropical rain forest of southeastern Nicaragua since it

1Plant Ecology 00: 1–7, 2000.
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

XPS 7189 (VEGE) – product element 266487 – ICPC/Grafikon



was heavily damaged by hurricane Joan in October,
1988. Our original expectation was that the initial
phases of post-hurricane regeneration would be dom-
inated by the pioneer genera typical of post-agricul-
tural succession in this region (e.g. Cecropia,
Ochroma, Piper, Heliconia, Calathea). However this
is not the case; rather, nearly all of the species found
in primary forest before the hurricane regenerated di-
rectly, both by resprouting and from seedlings and
saplings already present (Boucher 1990; Boucher et
al. 1994; Ferguson et al. 1995; Vandermeer et al.
1990, 1995; Yih et al. 1991). Thus, regeneration after
the hurricane has not been “succession” in the sense
of species replacement; rather a substantial part of it
has been the regrowth of individual plants which sur-
vived the hurricane.

This unexpected trend made it particularly inter-
esting to compare the course of post-hurricane suc-
cession with succession after agricultural land use in
the same area. Here we present such a comparison
based on censuses done in 1993, five years after the
hurricane.

Methods

Our comparisons are based on data from annual cen-
suses of 10 by 100m (0.1ha) transects in rain forest at
two different sites in the hurricane-damaged region
(see maps in Vandermeer et al. (1990); Yih et al.
(1991)). The forests in these areas are high-diversity,
dicot-and-palm-dominated lowland neotropical rain
forest. Detailed descriptions of the sites and their veg-
etation have been given elsewhere (Vandermeer et al.
1990; Yih et al. 1991; Granzow-de la Cerda et al.
1997).

The initial detailed evaluation of forest damage
from Hurricane Joan, done in February 1989 about
four months after the storm, included two sites: La
Bodega (11°52� N., 83°58� W., elevation 10–20m.)
and Las Delicias (12°18� N., 83°52� W., elevation
30–60m.). A third site, Fonseca (12°16� N., 83°58�
W., elevation 20–40m.), was added in February 1990.
We were unable to locate suitable post-agricultural
secondary forest near the Las Delicias site, since this
is an area of active settlement and what had been ei-
ther pasture or agriculture at the time of the hurricane
was still pasture and agriculture in 1993. Thus the
present article is concerned only with the Bodega and
Fonseca sites.

Two transects were established at Bodega in Feb-
ruary 1989, four months after the hurricane, and all
woody plants of 5cm DBH and up, whether living or
dead, were identified and their heights, diameters and
coordinates within the transect were recorded. The
combined data set of all plants censused, both living
and dead, was used as the estimate of the composi-
tion of the forest at the time of the hurricane, in Oc-
tober 1988 (Vandermeer et al. 1990; Yih et al. 1991).
In February and March of 1990 four more transects
were added: one additional one at Bodega and three
at Fonseca. None of the transects were in areas which
had burned after the hurricane. Diameters and coor-
dinates were recorded for all live trees of 3.2cm DBH
or more. The censuses have been repeated annually
in February–March.

In February of 1993, working with local farmers,
we identified areas of secondary forest at Bodega and
Fonseca which had been abandoned from agriculture
in 1988, the year of the hurricane. At each site a 10m
by 130m transect was established in this secondary
forest and all live trees of 3.2cm DBH or more were
censused. Thirty meters’ length of each transect was
later dropped from the analysis, both to avoid edge
effects and to make the areas censused comparable to
those for the transects in post-hurricane forest.

At Fonseca, the post-agriculture transect was lo-
cated on the land of Mr Ildefonso Torres, about 2km
from each of the three post-hurricane transects. Ac-
cording to Mr Torres, this land had been in maize be-
fore abandonment, and had also contained a substan-
tial amount of weedy grasses. It had not been burned
between the time of abandonment and our census in
1993. At Bodega the post-agriculture transect was on
former crop land belonging to Mr Antonio Reyes,
about 1km from each of the post-hurricane transects.
Based on conversations with Mr Reyes and the ap-
pearance of the area, it apparently had not been
burned since abandonment, but we do not know for
certain which crops had been planted on this land
previously.

The data set thus consists of ten transects: two
pre-hurricane (BodPre1 and BodPre2), six post-hurri-
cane (BodHur1, BodHur2, BodHur3, FonHur1, Fon-
Hur2 and FonHur3), and two post-agriculture
(BodAgr and FonAgr). In each case the first three let-
ters indicate the site (Bodega or Fonseca), the next
three letters the treatment (Pre = pre-hurricane, Hur =
post-hurricane, Agr=post-agriculture) and the number
indicates the replicate.
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For each of these transects we calculated tree den-
sity, the number of tree species present, the total basal
area and the number of individuals of each species
present. Dominance was measured by the relative
density of the 10 most abundant species in each
transect; using the 5 most abundant or 20 most abun-
dant species gave the same results.

Non-parametric measures of association (Spear-
man’s �) and analyses of variance (Kruskal-Wallis)
were used for statistical analysis because of the non-
normality, heteroscedasticity and unbalanced design
of the data. Similarity of species composition, mea-
sured using Spearman’s �, was used to group the
transects by cluster analysis using unweighted pair-
group averages (as with a similar data set by Terborgh
et al. (1996)). Non-metric multidimensional scaling,
using SPSS procedure ALSCAL with Euclidean dis-
tance as the proximity measure, was used to illustrate
the difference in composition among the transects.

We used the S1* estimator of Chao (1984) to es-
timate the total number of species in each assem-
blage, using the data on the number of species actu-
ally found in each transect and the number of species
for which only one or only two individuals were
found. This estimator, calculated by:

S1
*�Sobs�F1

2/2F2,

where Sobs is the observed number of species, F1 is
the number of species found exactly once (single-
tons), and F2 is the number of species found exactly
twice (doubletons), has been found to perform well
with real data from similar taxa in a region close to
our study areas (Colwell and Coddington 1994;
Chazdon et al. 1998) and does not depend on assump-
tions about the form of the species accumulation
curve. Among its advantages over other estimators are
that it is relatively insensitive to small numbers of
quadrats and to moderate patchiness of spatial distri-
butions (Chazdon et al. 1998).

Voucher specimens were collected for each un-
known species, and have been deposited in the her-
baria of the Universidad Centroamericana in Man-
agua, Nicaragua, the Instituto Nacional de Biodiver-
sidad in Santo Domingo de Heredia, Costa Rica, and
the University of Michigan, Ann Arbor, USA.

Results

The cluster analysis of the ten transects (Figure 1)
shows clearly that the history of land use rather than
location is the important determinant of species com-
position. All six of the post-hurricane transects clus-
ter together, as do the two pre-hurricane transects.
The post-agriculture transects cluster separately, and
only link to the pre- and post-hurricane transects at
the same sites at the final step (� = .027).

Thus the cluster analysis results perfectly match
the history of use of the transects, and only within
land-use-history groups do they match the pattern of
geographic proximity. While post-hurricane forests
first cluster with each other, at a second level (� =
.230) they most closely resemble the pre-hurricane
forests, rather than post-agricultural successional for-
ests of the same age.

Both the actual number of species and the esti-
mated total number of species were significantly
higher, and dominance significantly lower, in post-
hurricane transects compared to post-agriculture
transects (Kruskal-Wallis non-parametric ANOVA us-
ing the ranks of the data in Table 1; P = .0455 in each
case). Density and basal area, on the other hand, did
not differ significantly between these two land-use-
histories (P = 1.00 and P = .1824, respectively). None

Figure 1. Cluster analysis of ten rain forest transects in southeast-
ern Nicaragua, using unweighted pair group averages with Spear-
man’s non-parametric coefficient of association (�) as the measure
of similarity. Transects are labeled by site and transect name; final
letters of label indicate whether the transect census is pre-hurricane
(Pre), post-hurricane (Hur), or post-agriculture (Agr), and numbers
indicate replicates. X-axis shows value of � at which clusters are
linked.

3



of the variables in Table 1 differed significantly be-
tween the Bodega and Fonseca sites.

The dominant species in post-agriculture succes-
sion fall into three groups. Some are also important
in post-hurricane succession, at least in some of the
transects (e.g. Croton smithianus, Goethalsia meian-
tha, Cecropia obtusifolia and Isertia hankeana). Oth-
ers are important in both the pre-hurricane and post-
hurricane transects (e.g. Byrsonima crassifolia, Mico-
nia elata, Dendropanax arboreus). A third group are
specific to post-agricultural succession, and were not
found in either pre- or post-hurricane transects (Mi-
conia argentea, Tabernaemontana chrysocarpa).
There is one potential combination which was totally
absent: no species were found in both post-agriculture
and pre-hurricane transects, which were not also
found in the post-hurricane transects.

Most of the important species in post-hurricane
succession are not found in post-agriculture succes-
sion (e.g. Vochysia ferruginea, Cupania glabra,
Rinorea squamata, Miconia prasina, Pseudolmedia
spuria, Inga thibaudiana), while all of these were
common in the pre-hurricane forest also. Thus the
pattern shown by the cluster analysis (Figure 1) is due
to post-agriculture transects sharing only a few spe-
cies with the other transects, while pre-hurricane and
post-hurricane transects both have more species, and
have more of them in common.

Discussion

Land use history, rather than geography, is clearly the
predominant factor in determining the composition of
five-year old successional forests in this area. The
clustering of the transects (Figure 1) corresponds ex-
actly to their history of previous use rather than to

their geographic location – despite the fact that the
Bodega and Fonseca sites are about 65km apart, and
the transects within each site are at most 2km apart.
Pre- and post-hurricane forests are relatively similar
in composition, while post-agriculture successional
forests are quite distinctive (Figure 2). Post-agricul-
ture forests are also notable in having fewer species
and greater dominance by a few species. Thus both
components of diversity – richness and evenness – are
lower in early successional post-agriculture forests
(Table 1).

Diversity did not differ significantly by site in suc-
cessional forests, nor did density or basal area. The
cluster and NMDS results also suggest that between-
site similarity for post-hurricane transects is greater
than for post-agriculture transects (� values of .358
vs. .237, respectively). Geographic proximity is only
a useful predictor of structure or composition for suc-
cessional forests which have the same history of pre-
vious land use (Figure 1).

Table 1. Observed species richness, total species richness (estimated by S1*; Chao (1984)), dominance as measured by the relative density
of the 10 most abundant species, density (ha−1) and basal area of trees 5.0cm DBH or more (m2/ha), for ten rain forest transects in south-
eastern Nicaragua

Use History Post-Agr Post-Agr Pre-Hur Pre-Hur Post-Hur Post-Hur Post-Hur Post-Hur Post-Hur Post-Hur

Site Bodega Fonseca Bodega Bodega Bodega Bodega Bodega Fonseca Fonseca Fonseca

Transect Name/Number Ag Ag 1 2 1 2 3 1 2 3

Variable

Actual number of species 30 27 42 40 73 82 74 57 65 55

Estimated total species (S1*) 42.0 37.0 52.2 52.8 89.9 150.1 99.9 83.5 97.1 83.6

Dominance (%) 93 85 54 57 51 45 52 60 69 57

Density (ha−1) 4650 1880 1220 1120 2570 3230 2330 2550 3420 2550

Basal Area (m2/ha) 11.55 2.88 20.95 27.30 7.95 23.04 24.16 7.75 23.44 12.59

Figure 2. Configuration in two dimensions of non-metric multidi-
mensional scaling, using SPSS procedure ALSCAL with Euclid-
ean distance as measure of proximity, for ten rain forest transects
in southeastern Nicaragua. Transect labels as in Figure 1.
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Walschburger and von Hildebrand (1991) found
patterns quite similar to ours in comparing natural
gaps, post-agriculture sites (rastrojos) and mature
rain forest of various ages in the Colombian Amazon.
During the early years of succession the rastrojos
were strongly dominated by a few species of Cecro-
pia, Vismia and Miconia (e.g. 8 species in these three
genera made up 87% of relative density in 3-year-old
stands). Most of these dominants of rastrojos were
rare or absent in both natural gaps of the same age
and mature forest. Natural gaps had different species
as dominants (e.g. Clathrotropis macrocarpa and
Macrolobium sp.), and these species made up much
smaller proportions of total density.

Comparing 60-year-old forest, abandoned coffee
plantations and abandoned pastures in Puerto Rico,
Zimmerman et al. (1995) found no significant differ-
ences in species richness, evenness, density or basal
area according to previous land use. They did, how-
ever, show strong effects of land use history on spe-
cies composition, with former coffee plantations be-
ing dominated by Guarea guidonia and abandoned
pastures by Tabebuia heterophylla, Myrcia deflexa
and Palicourea riparia. As in our study, the major
species in areas damaged by Hurricane Hugo (e.g.
Cecropia schreberiana, Psychotria berteriana) were
different from the dominants of post-agricultural suc-
cession.

In another study in Puerto Rico, Aide et al. (1995)
similarly found that the course of post-pasture succes-
sion, dominated by herbaceous plants and then by
shrubs of the families Rubiaceae, Melastomataceae
and Myrtaceae, is quite different from that of recov-
ery after natural disturbances, in which pioneer spe-
cies such as Cecropia schreberiana, Ochroma pyra-
midale and Schefflera morototoni predominate. They
found that the rate of recovery after abandonment of
long-used pastures is much slower than after other
kinds of disturbance, a difference explained by the
lack of seedlings, sprouts and buried seeds as poten-
tial propagules. All of these sources of regeneration
are available after hurricanes, on the other hand, al-
lowing more rapid recovery.

The predominant life history characteristics of the
major post-hurricane species, which we have dis-
cussed previously (Vandermeer et al. 1997; Boucher
et al. 1994), are useful in understanding the selection
imposed by the hurricane and by conditions immedi-
ately afterwards. Based on pre-hurricane densities and
diameters, post-hurricane densities and growth rates,
and modes of regeneration after disturbance (e.g.

sprouting, seedlings, seeds), there appear to be three
major groups of species which do well in post-hurri-
cane forest. By far the largest number of these spe-
cies were resprouters, characterized by vegetative re-
generation from individuals which survived the hur-
ricane and slow diameter growth afterwards. A second
group of previously rare “pioneer” and “heliophyte”
species colonized from seed (e.g. Cecropia, Croton,
Trema, Isertia) and initially increased rapidly in abun-
dance, showing high rates of diameter growth. After
about 5 years, however, their densities leveled off or
declined and their diameter growth rates fell to close
to zero. Finally Vochysia ferruginea, a common spe-
cies before the hurricane, was unusual in that while
practically all the adults died immediately after the
storm, its high seedling density and rapid height and
diameter growth rates allowed it to recover quickly.
It differs from the pioneer/heliophyte group in its con-
tinuing high density and diameter growth rate, a de-
cade after the hurricane, as well as by the fact that it
is abundant in all size classes in pre-disturbance for-
est (Boucher et al. 1994).

Agricultural land use generally seems to select
strongly among the species present in rain forest, so
that relatively few species dominate the early years
of post-agricultural succession (Riera 1992; Fujisaka
et al. 1998). The traits on the basis of which this se-
lection has operated include fire resistance, drought
resistance, fast growth rates in full sunlight and the
ability to resprout repeatedly when burned or cut with
a machete (Budowski 1965; Gomez-Pompa et al.
1972; Ewel 1980; Uhl 1987; Janzen 1990; Walsch-
burger and von Hildebrand 1991; Goldammer 1992;
Nepstad et al. 1996). Many of the characteristics fa-
vored by hurricane disturbance thus differ substan-
tially from those favored by agricultural disturbance,
leading to quite different communities.
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